Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain.
نویسندگان
چکیده
The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardiac TnC in the Ca2+-saturated state has been determined by nuclear magnetic resonance spectroscopy. The regulatory domain exists in a "closed" conformation even in the Ca2+-bound (the "on") state, in contrast to all predicted models and differing significantly from the calcium-induced structure observed in skeletal TnC. This structure in the Ca2+-bound state, and its subsequent interaction with troponin I (TnI), are crucial in determining the specific regulatory mechanism for cardiac muscle contraction. Further, it will allow for an understanding of the action of calcium-sensitizing drugs, which bind to cardiac TnC and are known to enhance the ability of cardiac TnC to activate cardiac muscle contraction.
منابع مشابه
Molecular Dynamics Simulations of the Cardiac Troponin Complex Performed with FRET Distances as Restraints
Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster reson...
متن کاملCrystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation.
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding...
متن کاملThe structure of cardiac troponin C regulatory domain with bound Cd2+ reveals a closed conformation and unique ion coordination.
The amino-terminal domain of cardiac troponin C (cNTnC) is an essential Ca(2+) sensor found in cardiomyocytes. It undergoes a conformational change upon Ca(2+) binding and transduces the signal to the rest of the troponin complex to initiate cardiac muscle contraction. Two classical EF-hand motifs (EF1 and EF2) are present in cNTnC. Under physiological conditions, only EF2 binds Ca(2+); EF1 is ...
متن کاملStructure of the Inhibitor W7 Bound to the Regulatory Domain of Cardiac Troponin C†
The calmodulin antagonist W7 binds to troponin C in the presence of Ca(2+) and inhibits striated muscle contraction. This study integrates multiple data into the structure of the regulatory domain of human cardiac troponin C (cNTnC) bound to Ca(2+) and W7. The protein-W7 interface is defined through a three-dimensional {(1)H,(13)C}-edited-{(1)H,(12)C}-detected NOESY NMR experiment, and other as...
متن کاملConformation of the regulatory domain of cardiac muscle troponin C in its complex with cardiac troponin I.
Calcium activation of fast striated muscle results from an opening of the regulatory N-terminal domain of fast skeletal troponin C (fsTnC), and a substantial exposure of a hydrophobic patch, essential for Ca(2+)-dependent interaction with fast skeletal troponin I (fsTnI). This interaction is obligatory to relieve the inhibition of strong, force-generating actin-myosin interactions. We have dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 29 شماره
صفحات -
تاریخ انتشار 1997